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Introduction

• New physics containing invisible particle(s) at the 
TeV scale is well-motivated.

- WIMP dark matter

- Precision electroweak constraints

• Many candidates for new physics at the TeV scale 
have some new parity symmetries.  As a result, the 
lightest particle charged under the new symmetry 
will be stable, and can be a dark matter candidate 
if neutral. E.g., supersymmetry (R-parity) UEDs 
(KK-parity), little Higgs with T-parity, etc. 



Introduction

• At colliders these models give similar signatures: 
jets/leptons + missing energy.

• To identify/distinguish the underlying new physics, 
we need to reconstruct the signal events and 
measure the properties of the new particles, 
including masses, spins and couplings. However, 
with 2 or more missing particles in each event, this 
is quite challenging.
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generating a large top quark mass. Models of extra dimensions, on the other hand, have the
ability to generate hierarchies by placing families on disparate hyper-surfaces in the extra
dimensions. In all three classes of models, the constraints from flavor physics will play a
crucial role.
It is clear that fitting any new physics into a model will need theorists conversant in the
cross-pollination between model building and flavor physics as well as skilled personnel
in calculating the effects of new heavy physics on flavor observables. The prioritization of
heavy flavor projects, however, will very much depend on the results which are expected
from the B-factories in the coming years.

B.3.8 Prioritized List of Projects

Based on the discussion in the preceding sections, we prioritize the new physics projects of the
LHC-TI as follows:

1. Needed at LHC startup (2007 – 2008):

(a) study how the spin of SUSY particles and their couplings can be measured.
(b) study the jet activity in cascade events.
(c) include CP-violating phases in supersymmetric production and decay processes.
(d) examine how well the sum rules of Little Higgs and Higgsless models can be tested
as a function of the integrated luminosity available.

(e) complete spin correlations in the RS model in Pythia and fully implement the UED
in Pythia and Herwig. Calculate search reaches for UED.

(f) develop benchmark points for models with extra dimensions and gather information
on the parameter space which is consistent with existing data.

(g) study the discovery reach of the LHC in Higgsless models with gauge-Higgs unifica-
tion and Randall-Sundrum type models.

(h) learn how well SUSY and UED can be discriminated.

2. For 10− 30 fb−1 (2008 – 2010):

(a) implement a full NLO SUSY QCD event generator.
(b) compute SUSY QCD corrections to Higgs production in association with top and
bottom quarks.

(c) include branon production and transplanckian effects in MC generators.
(d) carry out more complete studies of the production of new vector bosons in Little Higgs
and Higgsless models.

(e) perform more complete studies of the phenomenology of heavy fermions and pseudo-
axions in Little Higgs models.

(f) implement new physics from string constructions, such as general SUSY breaking
scenarios in event generators.
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Mass measurements from 
kinematics

• No invariant mass peak if there are missing 
particles.

• Most observables are sensitive to mass differences 
instead of overall mass scale.

• Total cross section and the likelihood method are 
model-dependent. One needs to know the model 
first.

• Goal: model-independent mass determinations 
from kinematics only.



Mass measurements from 
kinematics

Methods:

• End point/edge of invariant mass distributions

• New kinematic variables, e.g., MT2

• Kinematic constraints from mass shell 
conditions

Experimental smearing, backgrounds, and 
combinatorics are important issues.  We will focus 
on the methods in this talk and try to find features 
that are less sensitive to these potential problems.



End point method

• Requires longer decay chains.

• Does not use all information, e.g., the other chain.

2 visible particle per chain.
Example: the dilepton edge.
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End point method
3 visible particles per chain

Example:
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There are endpoints in the invariant mass distributions mll , mqll ,
mql(high), mql(low).



SPS 1a study points: Gjelsten, Miller, Osland, hep-ph/0410303
Point g̃ d̃L d̃R ũL ũR b̃2 b̃1 t̃2 t̃1
(α) 595.2 543.0 520.1 537.2 520.5 524.6 491.9 574.6 379.1

(β) 915.5 830.1 799.5 826.3 797.3 800.2 759.4 823.8 610.4

ẽL ẽR τ̃2 τ̃1 ν̃eL ν̃τL H± A

(α) 202.1 143.0 206.0 133.4 185.1 185.1 401.8 393.6

(β) 315.6 221.9 317.3 213.4 304.1 304.1 613.9 608.3

χ̃0
4 χ̃0

3 χ̃0
2 χ̃0

1 χ̃±
2 χ̃±

1 H h

(α) 377.8 358.8 176.8 96.1 378.2 176.4 394.2 114.0

(β) 553.3 538.4 299.1 161.0 553.3 299.0 608.9 117.9

Table 1: Masses [GeV] for the considered SPS 1a points (α) and (β) of Eq. (3.2).
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Figure 7: Cross-sections as m1/2, m0 and A0 are varied along the SPS 1a slope, defined by
Eq. (3.1). The vertical dotted lines represent SPS 1a points (α) and (β).

pair production cross-sections, as m1/2 is varied along the SPS 1a line. Notice that these

cross-sections fall very rapidly as m1/2 is increased, which will cause repercussions in the

analysis of SPS 1a (β).

The cross-sections for gluino–gluino, gluino–squark and squark–squark pair produc-

tions are detailed in Table 2 for the two chosen analysis points, together with the SUSY

total rate. Of course since other supersymmetric particle pairs may contribute to the total

SUSY rate it is not simply a sum of the other numbers in the table.

These supersymmetric particle pairs are predominantly produced by QCD interactions

of quarks and gluons in the colliding protons. For gluino pairs this is mainly due to gg → g̃g̃

via t-channel gluino exchange and s-channel gluons, and at a much smaller rate qq̄ → g̃g̃ via

s-channel gluons. Squark pairs with the same handedness have the dominant production
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parameter µ. However, the assumption of gauge unification at the GUT scale explicit in

mSUGRA models leads to the relation

M1 ≈
5

3
tan2 θW M2 (2.1)

between the U(1) and SU(2) gaugino masses, M1 and M2 respectively. As a result, M1

tends to be rather low, significantly lower than m1/2. Furthermore, the derived quantity

µ is often required to be much larger than M1 in order to give the correct electroweak

symmetry breaking (at the SPS 1a (α) reference point µ = 357.4 GeV). For the majority

of parameter choices this implies that the LSP will be χ̃0
1, with τ̃1 being the LSP only if

m0 " m1/2, and χ̃±
1 only for a small region where m1/2 → 0. The left-handed sneutrino,

by virtue of its SU(2) interactions, is usually heavier than τ̃1, and is anyway ruled out by

direct searches [29]. It is indeed fortunate that χ̃0
1 is the LSP for most of the parameter

space since it is clear that only an electrically neutral LSP can play the role of the dark

matter constituent which is believed to fill the universe. Finally, the gaugino mass relation,

Eq. (2.1), implies that the LSP is usually bino-like.

The first requirement for the decay chain q̃ → χ̃0
2q → l̃lq → χ̃0

1llq is that the gluino

should be comparable to or heavier than the squark initiating the decay chain. If the

gluino is sufficiently light, then the squark will almost always choose to decay via its strong

interaction q̃ → g̃q rather than by the electroweak decay q̃ → χ̃0
2q. Of course, one does not

need all of the squarks to be lighter than the gluino; as long as one squark, for example b̃1, is

lighter than the gluino, useful information can potentially be obtained from its subsequent

decay chain. The second important characteristic is that χ̃0
2 should be heavier than l̃,

thereby allowing the lower part of the chain to proceed, χ̃0
2 → l̃l → χ̃0

1ll. Otherwise χ̃0
2

will decay to χ̃0
1Z or χ̃0

1h, or to χ̃0
1f f̄ via a three-body decay, and the useful kinematic

endpoints are lost.

In order to understand where in the mSUGRA parameter space these hierarchy require-

ments are realised, we have performed a scan over the m1/2–m0 plane for four different

choices of A0 and tan β (with µ > 0), and identified the different hierarchy regions with

different colours in Fig. 1. The renormalisation group running of the parameters from the

GUT scale to the TeV scale has been done using version 7.58 of the program ISAJET [30],

which is inherent to the definition of the ‘Snowmass Points and Slopes’ (see Sect. 3).

The upper left plot shows the m1/2–m0 plane with A0 = −m0 and tan β = 10 and

includes the SPS 1a line and points (labeled (α) and (β)). The upper right plot has A0 = 0

and tan β = 30 and contains the benchmark point SPS 1b. The lower left plot also has

A0 = 0 but tan β = 10 and contains the SPS 3 benchmark line and point. Finally the lower

right plot has A0 = −1000 GeV and tan β = 5 and contains SPS 5.

The different hierarchies themselves are combinations of the hierarchy between the

gluino and the squarks important to the upper part of the decay chain, and that of χ̃0
2

and the sleptons relevant to the later decays. Since ml̃R
< ml̃L

for any set of mSUGRA

parameters, we here use l̃R. The seven numbered regions are defined by:

(i) g̃ > max(d̃L, ũL, b̃1, t̃1) and χ̃0
2 > max(l̃R, τ̃1)
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Figure 1: Classification of different hierarchies, labeled (i)–(vii), for four combinations of tanβ and
A0, such that the four panels contain respectively the SPS 1a line, the SPS 1b point, the SPS 3 line,
and the SPS 5 point. The regions marked ‘TF’ are theoretically forbidden. (See text for details.)

(ii) g̃ > max(d̃L, ũL, b̃1, t̃1) and l̃R > χ̃0
2 > τ̃1

(iii) g̃ > max(d̃L, ũL, b̃1, t̃1) and min(l̃R, τ̃1) > χ̃0
2

(iv) d̃L > g̃ > max(ũL, b̃1) and min(l̃R, τ̃1) > χ̃0
2

(v) min(d̃L, ũL) > g̃ > b̃1 and min(l̃R, τ̃1) > χ̃0
2

(vi) min(d̃L, ũL, b̃1) > g̃ > t̃1 and min(l̃R, τ̃1) > χ̃0
2

(vii) min(d̃L, ũL, b̃1, t̃1) > g̃ and min(l̃R, τ̃1) > χ̃0
2 (2.2)

where for fermions a particle’s symbol represents its mass, while for scalars a particle’s sym-
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analysis:
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where ‘low’ and ‘high’ on the left-hand side in Eq. (4.5) refer to minimising and maximising

with respect to the choice of lepton. Furthermore ‘min’ in Eq. (4.9) refers to the threshold

in the subset of the mqll distribution for which the angle between the two lepton momenta

(in the slepton rest frame) exceeds π/2, corresponding to the mass range (4.1).

Notice that the different cases listed in Eq. (4.4) are distinguished by mass ratios of

neighbouring particles in the hierarchy, mq̃L/mχ̃0
2
, mχ̃0

2
/ml̃R

and ml̃R
/mχ̃0

1
. Since each

decay in the chain involves two massive particles and one massless one, the boosts from

one rest frame to another are conveniently expressed in terms of such mass ratios.
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Figure 10: Theoretical mass distributions for SPS 1a (α) and (β), as well as for three other mass
scenarios, denoted (i), (ii) and (iii). Kinematic endpoints are given in units of mmax

qll . (More details
will be given in [42].)

4.1 Theory curves of invariant mass distributions

In Fig. 10 we show ‘theory’ versions of the five mass distributions discussed above for SPS 1a

(α) and (β), and three other mass scenarios. These distributions reflect the parton level

only, where the quark and leptons are assumed to be perfectly reconstructed, and particle

widths have been neglected, suppressing a mild smearing of the distributions. Leptons and
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Sparticle masses and mass differences [GeV]
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Figure 15: Sparticle masses and mass differences at SPS 1a (α) for solutions with ∆Σ ≤ 1. The
unfilled distributions in black show from left to right mχ̃0

1
, ml̃R

, mχ̃0
2
, mb̃1

and mq̃L
for solutions in

the nominal region (1,1). We will have such a solution in 94% of the experiments, see Table 5. The
unfilled distributions in blue show the same masses for solutions in region (1,2). Such a solution
occurs in 17% of the experiments, and the masses returned are lower. The smaller rate of the (1,2)
solutions is reflected in the smaller area under the blue curves. The ratio of probabilities between
(1,2) and (1,1) solutions is 17%/94% = 18%. The area under one of the blue curves is 18% of the
area under the corresponding black curve. The filled distributions show from left to right ml̃R

−mχ̃0
1
,

mχ̃0
2
−mχ̃0

1
, mb̃1

−mχ̃0
1

and mq̃L
−mχ̃0

1
. Again, the most populated distributions (black curves)

are for solutions in region (1,1), the least populated (blue curves) for (1,2) solutions. For mass
differences there is more overlap between the (1,1) and (1,2) solutions, in particular for ml̃R

−mχ̃0
1

and mχ̃0
2
−mχ̃0

1
, of which only the lower parts of the distributions are visible. Mass differences are

better determined than the masses themselves, reflected here by the narrower distributions of the
former. The exception is mb̃1

which largely decouples from the other masses.

distances from the ensemble means are in principle unknown, as seen from one experiment.

They can however be approximated by the procedure of simulating 104 experiments, where

the measured values play the role as ‘nominal’. This will engender a systematic shift, but

σ and any skewness should be fairly well approximated. The root-mean-square distances

from the mean values also have their counterparts in the 1σ errors returned by the fit of

each ‘experiment’. To within a few percent they are found to be identical. This means that

this information is available for the experiment actually performed. One can then make

the inverse statement: For a given experiment one can with ∼ 68% confidence state that

the nominal value of mχ̃0
1

lies within 3.8 GeV of the mass returned.

Due to the way masses enter in the endpoint expressions, the fit returns masses which

have a strong positive correlation. If one mass is low at the minimum of the Σ function,

so the others tend to be and by a similar amount. In the lower part of Table 6 ensemble

mean and root-mean-square values of mass differences are shown. It is clear that the three

lightest sparticles are very correlated. Fix one and the others are given very accurately. The
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Gjelsten, Miller, Osland, hep-ph/0410303

Sparticle masses and mass differences [GeV]
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Figure 16: Sparticle masses and mass differences at SPS 1a (β). All masses of solutions with
∆Σ ≤ 1 which lie in regions (1,2), (1,3) and on their common border are shown. From left to right
the unfilled distributions show mχ̃0

1
, ml̃R

, mχ̃0
2

and mq̃L
. The filled distributions show the narrower

mass differences ml̃R
−mχ̃0

1
, mχ̃0

2
−mχ̃0

1
and mq̃L

−mχ̃0
1
. Skewness of mass distributions is visible.

small, but for (β) the effect is large. The reason why we naively would expect a symmetric

distribution around the nominal masses in the first place, is that the endpoint measurements

are generated symmetrically. For complex functions like Eqs. (4.13)–(4.36) symmetric

fluctuation of the endpoint arguments will produce near-symmetric variation of the function

only for small fluctuations. As the arguments fluctuate more, the deviation from symmetry

in the function values grows. At (α) the endpoint fluctuations are so small that the effect is

negligible. For (β), where the endpoint fluctuations are larger, the effect of the ‘asymmetric

propagation’ is a noticeable increase of 3–4 GeV for the ensemble means.

This is however not sufficient to explain the low-mass 〈mχ̃0
1
〉 of 183 and 173 GeV

(∆Σ ≤ 99) without and with the threshold measurement, respectively. ‘Border effects’

need to be considered. As described earlier, (β) lies in (1,2) but close to the border to

(1,3). First consider the situation without the threshold measurement. There is then

always only one low-mass solution. If the (1,2) solution is physical, i.e. lies in (1,2), then

the true minimum of Σ(1 ,3 ) also lies in region (1,2) and so is unphysical, and vice versa,

as described in Sect. 6.3.

In Fig. 17 the mass of χ̃0
1 is plotted as a function of the border parameter, b, of

Eq. (6.4), for both physical and unphysical minima of Σ(1 ,2 ) and Σ(1 ,3 ). The minima of

Σ(1 ,2 ) are shown in red, from upper right to lower left. The Σ(1 ,3 ) solutions are in blue.

Filled boxes are physical solutions, i.e. Σ(1 ,2 ) (red) for b > 1 and Σ(1 ,3 ) (blue) for b < 1.

Empty boxes are unphysical solutions. An asymmetry arises from the accidental fact that

for both functions the lower masses tend to lie in the unphysical region. The average of

the entire Σ(1 ,2 ) distribution, both physical and unphysical minima, returns 164 GeV, the

nominal value plus the 3 GeV of the asymmetric propagation effect. It is then obvious that
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∫
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MT2 method

• Transverse mass MT:
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The end point of MT distribution is MW.



MT2 method

• Stransverse mass MT2: Lester & Summers, hep-ph/9906349

! !

!!""#$%&'()*+,'*,"-(**."!"#$"%&"$'()

!"/'0(1"2"-(**3"
!"45)*06,'"(11"7('&0&05)*"58"



MT2 method
Properties of MT2:

• A function of the missing 
particle mass     .

• End point of MT2 gives 
the correct mother 
particle mass MY if we 
assume the correct 
missing particle 
mass,                 .

MT2 for an example event:

! !
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! !
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µN = mN



MT2 method
When there are 2 or more visible particles on each 
chain, MT2,max exhibits a kink at the correct mass 
point. Cho, et al, 0709.0288, 0711.4526

3

The experimental feasibility of measuring mg̃ and mχ̃0
1

through mmax
T2 depends on the systematic uncertainty as-

sociated with the jet resolution since mmax
T2 is obtained

mostly from the momentum configurations in which some
(or all) quarks move in the same direction. Our Monte
Carlo study indicates that the resulting error is not so sig-
nificant, so that mg̃ and mχ̃0

1
can be determined rather

accurately by the crossing behavior of mmax
T2 . As a spe-

cific example, we have examined a parameter point in the
minimal anomaly mediated SUSY-breaking (mAMSB)
scenario [7] with heavy squarks, which gives

mg̃ = 780.3 GeV, mχ̃0
1

= 97.9 GeV,

and a few TeV masses for sfermions. We have gener-
ated a Monte Carlo sample of SUSY events for proton-
proton collision at 14 TeV by PYTHIA [8]. The event
sample corresponds to 300 fb−1 integrated luminos-
ity. We have also generated SM backgrounds such as
tt̄, W/Z + jet, WW/WZ/ZZ and QCD events, with less
equivalent luminosity. The generated events have been
further processed with a modified version of fast detec-
tor simulation program PGS [9], which approximates an
ATLAS or CMS-like detector with reasonable efficiencies
and fake rates.

The following event selection cuts are applied to have
a clean signal sample for gluino stransverse mass:

1. At least 4 jets with PT1,2,3,4 > 200, 150, 100, 50
GeV.

2. Missing transverse energy Emiss
T > 250 GeV.

3. Transverse sphericity ST > 0.25.

4. No b-jets and no leptons.

For each event, the four leading jets are used to calcu-
late the gluino stransverse mass. The four jets are di-
vided into two groups of dijets as follows. The highest
momentum jet and the other jet which has the largest
|pjet|∆R with respect to the leading jet are chosen as
the two ‘seed’ jets for division. Here pjet is the jet mo-

mentum and ∆R ≡
√

∆φ2 + ∆η2, i.e. a separation in
azimuthal angle and pseudorapidity plane. Each of the
remaining two jets is associated to a seed jet which makes
the smallest opening angle. Then, each group of the di-
jets is considered to be originating from the same mother
particle (gluino).

Fig.1 shows the resulting distribution of the gluino
stransverse mass for the trial LSP mass mχ = 90 GeV.
The blue histogram corresponds to the SM background.
Fitting with a linear function with a linear background,
we get the endpoint 778.0±2.3 GeV. The measured edge
values of mT2(g̃), i.e. mmax

T2 , as a function of mχ is shown
in Fig.2. Blue and red lines denote the theoretical curves
of (13) and (18), respectively, which have been obtained
in this paper from the consideration of extreme momen-
tum configurations. (A rigorous derivation of (13) and

(18) will be provided in the forthcoming paper [6].) Fit-
ting the data points with the curves (13) and (18), we
obtain mg̃ = 776.3±1.3 GeV and mχ̃0

1
= 97.3±1.7 GeV,

which are quite close to the true values, mg̃ = 780.3 GeV
and mχ̃0

1
= 97.9 GeV. This demonstrates that the gluino

stransverse mass can be very useful for measuring the
gluino and the LSP masses experimentally.
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FIG. 1: The mT2(g̃) distribution with mχ = 90 GeV for the
benchmark point of mAMSB with heavy squarks. Blue his-
togram is the SM background.
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FIG. 2: mmax

T2 as a function of the trial LSP mass mχ for the
benchmark point of mAMSB with heavy squarks.

Let us now consider the case that squark mass mq̃ is
smaller than the gluino mass mg̃. In such case, the fol-
lowing cascade decay is open;

g̃ → qq̃ → qqχ̃0
1. (19)

In this case also, we consider two extreme momentum
configurations which are similar to those considered for
three body gluino decay, and construct the corresponding
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FIG. 3: The mT2(g̃) distribution with mχ = 350 GeV for the
benchmark point of mirage mediation.
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benchmark point of mirage mediation.
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Figure 1: We assume the two decay chains share a common end-state given in this diagram. All previous
decay products are grouped into the upstream transverse momentum, k.

technique employed applies generically to models involving decays to a massive particle state that leaves the
detector unnoticed.

A powerful feature of the m2C distribution is that, with some mild assumptions, the shape away from
the endpoint can be entirely determined from the unknown mass scale and quantities that are measured.
The ideal shape fit against early data therefore provides an early mass estimate for the invisible particle.
This study is meant to be a guide on how to overcome difficulties in establishing and fitting the shape:
difficulties from combinatoric issues, from differing energy resolutions for the leptons, hadrons, and missing
transverse momentum, from backgrounds, and from large upstream transverse momentum (UTM) 4. As we
shall discuss, UTM actually provides surprising benefits.

The paper is structured as follows: In Section 2, we review m2C and introduce the new observation that,
in addition to an event-by-event lower bound on mY , large recoil against UTM enables one also to obtain
an event-by-event upper bound on mY . We call this quantity m2C,UB. Section 3 describes the modeling and
simulation employed. Section 4 discusses the implications of several effects on the shape of the distribution
including the m12 (in our case mll) distribution, the UTM distribution, the backgrounds, combinatorics,
energy resolution, and missing transverse momentum cuts. In Section 5, we put these factors together and
estimate the performance. We conclude in Section 6 with a discussion about the performance in comparison
to previous work.

2 Upper Bounds on mY from Recoil against Upstream Transverse

Momentum

We will now review the definition of m2C as providing an event-by-event lower bound on mY . In generalizing
this framework, we find a new result that one can also obtain an upper bound on the mass mY when the
two parent particles Y recoil against some large upstream transverse momentum kT .

2.1 Review of the Lower Bound on mY

Fig 1 gives the relevant topology and the momentum assignments. The visible particles 1 and 2 and invisible
particle N are labeled with with momentum α1 and α2 (which we group into α = α1+α2) and p, respectively
β = β1 + β2 and q in the other branch. We assume that the parent particle Y is the same in both branches
so (p+α)2 = (q +β)2. Any earlier decay products of either branch are grouped into the upstream transverse
momentum (UTM) 4-vector momentum, k.

4Our references to UTM correspond to the Significant Transverse Momentum (SPT), pair production category in [16] where
SPT indicates that the relevant pair of parent particles can be seen as recoiling against a significant transverse momentum.
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Figure 1: Events where the new state Y is pair produced and in which each Y decays through a two-body
decay to a massive new state X and a visible state 1 and then where X subsequently decays to a massive state
N invisible to the detector and visible state 2. All previous decay products are grouped into the upstream
transverse momentum, k.

variable to the case with three new on-shell states as depicted in Fig. 1. With an on-shell intermediate state,
the kinematic edge from the end point of the invariant-mass distribution of the visible states (1) and (2) on
a branch gives the relationship

maxm2
12 =

(M2
Y − M2

X)(M2
X − M2

N )

M2
X

. (2)

Each event now satisfies an additional set of on-shell constraints so the events should contain more infor-
mation. Because Eq. (1) does not give the mass difference and because the M2C variable does not use the
additional information available from having three on-shell states in each event, then a better variable with
which to find the mass scale likely exists by incorporating this missing information in the extremization.

In this paper we introduce a constrained mass variable more appropriate for this case, one with an on-
shell intermediate state, which we will call M3C . The variable M3C differs from M2C in that we assume an
on-shell intermediate state X connects the two visible decay products so there are three new states and two
relevant mass differences. We structure the paper around a case study of the supersymmetry benchmark
point SPS 1a [16]. In this study, the three new states are identified as Y = χ̃o

2, X = l̃ and N = χ̃o
1. The

visible particles leaving each branch are all opposite-sign same-flavor (OSSF) leptons (µ or e). This allows
us to group hadronic activity into the vector k identified as upstream transverse momentum (UTM).

The paper is structured as follows: Section 2 introduces the definition of M3C . At this stage we assume we
know the two mass differences, an assumption which will be justified later in the paper. Section 3 discuses
the dependence of M3C on complications from combinatorics, large UTM, missing transverse-momentum
(/PT ) cuts, parton distributions, and energy resolution. Section 4 applies M3C variables to HERWIG data from
the benchmark supersymmetry spectrum SPS 1a. Section 5 shows how combining the edge from Eq. (2)
with M3C one also finds the two mass differences MY −MN and MX −MN . Finally in Sec. 6 we summarize
the papers’s contributions.

2



Kinematic constraints

• Find the allowed region in the mass parameter 
space for each event by imposing mass shell 
conditions.

• Find the intersection of allowed regions by 
combining many signal events.

Figure 8: The map between a point in the observable space and the corresponding consistent

region in the mass space.

all the masses can be uniquely determined given enough of experimental events. It is
possible that there are degeneracies such that different mass points map into the same
observable region, f(m) = f(m′) for m != m′, e.g., the case of one step two-body decay

on each chain. In that case the masses cannot be uniquely determined from kinematics
alone and additional (model-dependent) information is required. In general we expect

f(m) to be unique if the dimension of the observable space is large enough. From the
above discussion, we see that the most important events for mass determination are

those which lie near the boundary of f(m) as they determine the shape and the size of
f(m). The edge/endpoint method can be viewed as a simple application of this idea by
projecting f(m) down to a few one-dimensional subspaces and extract the endpoints

of f(m) in these one-dimensional subspaces. It is also evident that it does not fully
utilize all the relevant information contained in the experimental events as it only uses

a few points on the boundary. In particular, in the case of two visible particles in each
decay chain it does not give enough information to determine all masses, yet we know

that the masses can be determined by other methods. A generalization to look at the
boundary of the two-dimensional subspaces of f(m) is currently being studied [19].
It can potentially give a more powerful method than the one-dimensional endpoint

method. Ideally, one would like to map out the whole boundary of f(m) in the high-
dimensional observable space to get all the information contained in the experimental

events. However, dealing with the high-dimensional space could be technically quite
difficult.

The method of kinematic constraints can be considered as the inverse map of the

– 16 –



Kinematic constraints
• 3 visible particle per chain, e.g., 

- Can be solved by combining 2 events

- Combinatorial backgrounds are a serious issue. 
Need to find ways to reduce wrong 
combinations.

The event topology

Example: q̃ → qχ̃0
2 → ql̃ l → qχ̃0

1ll .

! This could come from a longer decay chain as long as
there is no extra missing particle.

! Assume all intermediate particles on-shell.
! Assume mN = mN′ , mX = mX ′ , mY = mY ′ , mZ = mZ ′ .

! !
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HC, D. Engelhardt, J.F. Gunion, Z.Han, and B. McElrath, arXiv:0802.4290



An ideal example
q̃q̃ → qχ̃0

2qχ̃0
2 → ql̃ lql̃ l → qχ̃0

1llqχ̃0
1ll

SPS1a, masses: ( 97.4, 142.5, 180.3, 564.8 ) GeV
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2 solutions per pair on average.

Realistic case
Wrong combinations

! One event, 8 combinations for 2µ2e channel, 16 for 4µ or
4e channel.

! A pair of events, 64, 128 or 256 combinations.
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16 times more solutions.

Realistic solution distributions
Cuts:

1. 4 isolated leptons with pT > 10 GeV, |η| < 2.5, consistent
flavors and charges.

2. No b-jet, ≥ 2 jets with pT > 100 GeV, |η| < 2.5. Take 2
highest-pT jets as partiles 7 and 8.

3. pTmiss > 50 GeV.
About 1000 events (∼ 700 signals) after cuts for 300 fb−1.
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Mass peaks with smaller biases
SPS1a
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10 sets:

mN = 94.1 ± 2.8 GeV, mX = 138.8 ± 2.8 GeV,
mY = 179.0 ± 3.0 GeV, mZ = 561.5 ± 4.1 GeV.

Compare: { 97.4, 142.5, 180.3, 564.8 } GeV

An ideal example
q̃q̃ → qχ̃0

2qχ̃0
2 → ql̃ lql̃ l → qχ̃0

1llqχ̃0
1ll

SPS1a, masses: ( 97.4, 142.5, 180.3, 564.8 ) GeV
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Ideal case With wrong combinations

Including experimental smearing After background reduction

Example:



Kinematic constraints
• For shorter decay chains, the masses cannot be 

determined by kinematic constraints alone.Event topology

! Assume mN = mN′ , mX = mX ′ , mY = mY ′ .
! Include but not limited to the 3 visible particles per chain

case. For example, direct χ̃0
2 pair production.

! A simpler topology, but a harder problem–not enough
constraints. (The edge method fails.)

Consistent region–the ideal case
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No smearing, correct combination, (246.6, 128.4, 85.3) GeV,
500 events.

! The correct masses are located at the endpoint .

Consistent region, ideal case

(mY, mX, mN)=
(246.6,128.4, 85.3) GeV
500 events, no smearing,
correct combination

HC, J.F. Gunion, Z. Han, G. Marandella, and B. McElrath, arXiv: 0707.0030



Minimal kinematic constraints and MT2

• Minimal kinematic constraints: mass shell 
constraints of the decaying mother particles and 
the missing particles + missing transverse 
momentum constraints

• MT2(mN) is the boundary of the allowed region 
and forbidden region based on the minimal 
kinematic constraints.

Figure 1: An event with two invisible particles N , each from a decay of a heavy particle Y .

methods using the variable mT2 [9], which is sometimes called the stransverse mass.
mT2 is defined event by event as a function of the invisible particle mass. Its endpoint

or maximal value over many events, denoted by mmax
T2 , gives an estimate of the mother

particle’s mass in the beginning of the decay chain. When the invisible particle’s mass

is unknown, one has to use a trial mass to calculate mT2 and only obtains an estimate
of the mass difference. However, it has been shown in Ref. [10] that if the two mother

particles decay through three-body decays to the invisible particles, a “kink” occurs on
the mmax

T2 curve as a function of the trial mass. The position of the kink is actually at the
true value of the invisible particle mass, which allows us to simultaneously determine

the masses of both the invisible particle and its mother particle. A generalized study
of the kink method is available in Ref. [11].

The purpose of this paper is to clarify the relation between the two mass deter-

mination techniques, i.e., the one using kinematic constraints and the one using the
variable mT2. An apparent difference between the two approaches is that the former
uses the 4-momenta of the visible particles, while the latter is defined solely on the

plane transverse to the beam direction. Nevertheless, due to the lack of total momen-
tum measurement in the beam direction, the longitudinal momenta of the two invisible

particles can be arbitrarily chosen, offsetting some of the information obtained from
the visible particles’ longitudinal momenta. As a consequence, mT2 is equivalent to the
“minimal” kinematic constraints discussed below.

We illustrate our definition of “minimal” constraints in Fig. 1. Two mother par-

ticles of the same mass, mY , each decays to a dark matter particle of mass mN , plus
some visible particles, either directly or through other on-shell particles. Since the

– 3 –

For a given µN , we can examine the mT2 distribution for a large number of events,
which in general has an end point. As discussed in Ref. [9], the mT2 end point gives

the correct mass of the particle Y when the trial mass is equal to the true mass of the
missing particle N , µN = mN . We can therefore use mT2 to determine mY if mN is
known, analogous to the W mass measurement. Moreover, it has recently been shown

[10] that, even if mN is unknown, in some cases, when we plot the mT2 endpoint as a
function of the trial mass µN , there is a kink at µN = mN . Thus both mN and mY can

be determined by studying the mT2 distribution.
We will discuss mass determination using mT2 in Section 3. Before that, we first

give an alternative definition of mT2, using the concept of kinematic constraints.

2.2 mT2 from minimal kinematic constraints

By kinematic constraints, we mean two kinds of constraints imposing on the 4-momenta
of the invisible particles: the mass shell constraints and the measured missing transverse
momentum constraints. Specifically, for the event in Fig. 1, we can write down the

following equations:

p2
1 = p2

2 = µ2
N ,

(p1 + pa)
2 = (p2 + pb)

2 = µ2
Y ,

px
1 + px

2 = /px, py
1 + py

2 = /py, (2.7)

where µY is a trial mass for the particle Y . We call this set of constraints “minimal”
because they correspond to the shortest decay chains. Note that for a given set of
(µN , µY ), the system contains only 6 equations, which are not enough for completely

determining p1 and p2. Nevertheless, Eqs. (2.7) still constrain the possible (µN , µY ).
In particular, we will shortly see that for a given µN , Eqs. (2.7) can be satisfied for

some physical momenta p1 and p2 if and only if µY > mT2(µN). Here, a momentum is
“physical” if all of its components are real and the energy component is positive. In

other words, mT2(µN) can be defined as the boundary of the consistent region on the
(µN , µY ) plane, subject to the minimal constraints in Eqs. (2.7). This fact has been
used in Ref. [12] but without a clear proof.

First, it is easy to show that µY cannot go below mT2 for a fixed µN . For
any (µN , µY ) in the consistent mass region, there exist physical p1 and p2 satisfying

Eqs. (2.7). On the other hand, from Eq. (2.4), we have

µ2
Y = (p1 + pa)

2 = (p2 + pb)
2 ≥ max{(α1 + αa)

2, (α2 + αb)
2}. (2.8)

By definition, mT2 is the minimum of max{(α1 + αa)2, (α2 + αb)2} over all partitions
of the missing transverse momentum. Therefore, we conclude that µY ≥ mT2(µN).

– 6 –

HC and Zhenyu Han, arXiv:0810.5187



Minimal kinematic constraints and MT2

Based on this, we obtain a new way to calculate MT2.
! !
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Calculating MT2
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Calculating MT2

The new algorithm based on kinematic constraints 
is 5-9 time faster and more accurate than the 
previous available code (based on scanning and 
minimization).
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• Contours of # of solvable events. The top contour 
is the MT2 curve, which exhibit a kink.

• Dash line is the end point of the invariant mass of 
the visible particles in one chain (constant mass 
difference in this case).

Y (!+p)

N (p)

N (q)

V (k)

Partons
P1

P2
Y("+q)

1 + 2 (!)

3 + 4 (")

Figure 1: We assume the two decay chains share a common end-state given in this diagram. All previous
decay products are grouped into the upstream transverse momentum, k.

technique employed applies generically to models involving decays to a massive particle state that leaves the
detector unnoticed.

A powerful feature of the m2C distribution is that, with some mild assumptions, the shape away from
the endpoint can be entirely determined from the unknown mass scale and quantities that are measured.
The ideal shape fit against early data therefore provides an early mass estimate for the invisible particle.
This study is meant to be a guide on how to overcome difficulties in establishing and fitting the shape:
difficulties from combinatoric issues, from differing energy resolutions for the leptons, hadrons, and missing
transverse momentum, from backgrounds, and from large upstream transverse momentum (UTM) 4. As we
shall discuss, UTM actually provides surprising benefits.

The paper is structured as follows: In Section 2, we review m2C and introduce the new observation that,
in addition to an event-by-event lower bound on mY , large recoil against UTM enables one also to obtain
an event-by-event upper bound on mY . We call this quantity m2C,UB. Section 3 describes the modeling and
simulation employed. Section 4 discusses the implications of several effects on the shape of the distribution
including the m12 (in our case mll) distribution, the UTM distribution, the backgrounds, combinatorics,
energy resolution, and missing transverse momentum cuts. In Section 5, we put these factors together and
estimate the performance. We conclude in Section 6 with a discussion about the performance in comparison
to previous work.

2 Upper Bounds on mY from Recoil against Upstream Transverse

Momentum

We will now review the definition of m2C as providing an event-by-event lower bound on mY . In generalizing
this framework, we find a new result that one can also obtain an upper bound on the mass mY when the
two parent particles Y recoil against some large upstream transverse momentum kT .

2.1 Review of the Lower Bound on mY

Fig 1 gives the relevant topology and the momentum assignments. The visible particles 1 and 2 and invisible
particle N are labeled with with momentum α1 and α2 (which we group into α = α1+α2) and p, respectively
β = β1 + β2 and q in the other branch. We assume that the parent particle Y is the same in both branches
so (p+α)2 = (q +β)2. Any earlier decay products of either branch are grouped into the upstream transverse
momentum (UTM) 4-vector momentum, k.

4Our references to UTM correspond to the Significant Transverse Momentum (SPT), pair production category in [16] where
SPT indicates that the relevant pair of parent particles can be seen as recoiling against a significant transverse momentum.
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Example 1:

Mass determination - hybrid method



Mass determination - hybrid method
If mass difference can be well-determined (only one 
chain is required, better statistics), one can count # 
of solvable events along the constant mass 
difference line. The correct mass is at maximum due 
to the kink nature of the contour.
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Mass determination - hybrid method

• First calculate MT2 end point contour, which 
relates mY and mN.

• Another relation among mY, mX, and mN can be 
obtained from the end point of invariant mass,

Event topology

! Assume mN = mN′ , mX = mX ′ , mY = mY ′ .
! Include but not limited to the 3 visible particles per chain

case. For example, direct χ̃0
2 pair production.

! A simpler topology, but a harder problem–not enough
constraints. (The edge method fails.)

Example 2: on-shell intermediate particle
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Mass determination - hybrid method

• Count # of solvable events along the contour by 
imposing the mX mass shell constraint.
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Conclusions

• A lot of progress in model-independent mass 
determination for invisible particles has been 
made recently.

• The relations among various kinematic variables 
and methods are better understood now.

• Combining these ideas together is likely to give 
the best determination of invisible particle masses.

• Event reconstruction can help to determine other 
properties (spins and couplings) of the new 
particles.


